
Week 5

5.1 Cosets and The Theorem of Lagrange
Let G be a group, H a subgroup of G. We are interested in knowing how large H
is relative to G.

We define a relation ∼L on G as follows:

a ∼L b if and only if b = ah for some h ∈ H,
or equivalently:

a ∼L b if and only if a−1b ∈ H.
Exercise: ∼L is an equivalence relation.

We may therefore partition G into a disjoint union of equivalence classes with

respect to ∼L. We call these equivalence classes the left cosets of H in G; each

left coset of H has the form

aH = {ah : h ∈ H}.
We could likewise define a relation ∼R on G by

a ∼R b if and only if b = ha for some h ∈ H,
or equivalently:

a ∼R b if and only if ba−1 ∈ H.
∼R is also an equivalence relation, whose equivalence classes, which are subsets

of the form

Hb = {hb : h ∈ H}, b ∈ G,
are called the right cosets of H in G.

Definition. The number of left cosets of a subgroup H of G is called the index of

H in G. It is denoted by:

[G : H]
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Theorem 5.1.1 (Lagrange). LetG be a finite group. LetH be subgroup ofG, then
|H| divides |G|. More precisely, |G| = [G : H] · |H|.
Proof. We already know that the left cosets of H partition G. That is:

G = a1H � a2H � . . . � a[G:H]H,

where aiH ∩ ajH = ∅ if i �= j. Hence, |G| = ∑[G:H]
i=1 |aiH|. Note that one of the

left cosets, say a1H , is equal to H = eH . The theorem follows if we show that

the size of each left coset of H is equal to |H|.
For each left coset S of H , pick an element a ∈ S, and define a map ψ :

H −→ S as follows:

ψ(h) = ah.

We want to show that ψ is bijective.

For any s ∈ S, by definition of a left coset (as an equivalence class) we have

s = ah for some h ∈ H . Hence, ψ is surjective. If ψ(h′) = ah′ = ah = ψ(h) for

some h′, h ∈ H , then h′ = a−1ah′ = a−1ah = h. Hence, ψ is one-to-one.

So we have a bijection between two finite sets. Hence, |S| = |H|.
Remark. As a consequence of the Theorem of Lagrange, we see that the numbers

of left cosets and right cosets, if finite, are equal to each other; more generally, the

set of left cosets has the same cardinality as the set of right cosets.

Corollary 5.1.2. Let G be a finite group. The order of every element of G divides
the order of G.

Proof. Since G is finite, any element of g ∈ G has finite order |g|. Since the order

of the subgroup:

H = 〈g〉 = {e, g, g2, . . . , g|g|−1}
is equal to |g|, it follows from Lagrange’s Theorem that |g| = |H| divides |G|.
Corollary 5.1.3. If the order of a group G is prime, then G is a cyclic group.

Proof. Let G be a group such that p = |G| is a prime number. Since p ≥ 2, there

exists a ∈ G \ {e}. The above corollary them says that |a| | p. But |a| �= 1, so we

must have |a| = p. This means that G = 〈a〉.
Corollary 5.1.4. If a group G is finite, then for all g ∈ G we have:

g|G| = e.

Proof. The previous corollary already says that |g| | |G|, i.e. |G| = k · |g|. So

g|G| = (g|g|)k = e.
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5.2 Examples of cosets
Example 5.2.1. Let G = (Z,+). Let:

H = 3Z = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}
The set H is a subgroup of G. The left cosets of H in G are as follows:

3Z, 1 + 3Z, 2 + 3Z,

where i+ 3Z := {i+ 3k : k ∈ Z}.
In general, for n ∈ Z, the left cosets of nZ in Z are:

i+ nZ, i = 0, 1, 2, . . . , n− 1.

Example 5.2.2. Let G = GL(n,R). Let:

H = GL+(n,R) := {h ∈ G : deth > 0} .
(Exercise: H is a subgroup of G.)

Let:

s =

⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠
∈ G

Note that det s = det s−1 = −1.

For any g ∈ G, either det g > 0 or det g < 0. If det g > 0, then g ∈ H . If

det g < 0, we write:

g = (ss−1)g = s(s−1g).

Since det s−1g = (det s−1)(det g) > 0, we have s−1g ∈ H . So, G = H � sH ,

and [G : H] = 2. Notice that both G and H are infinite groups, but the index of

H in G is finite.

Example 5.2.3. Let G = GL(n,R), H = SL(n,R). For each x ∈ R
×, let:

sx =

⎛
⎜⎜⎜⎜⎜⎝

x 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠
∈ G

Note that det sx = x.
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For each g ∈ G, we have:

g = sdet g(s
−1
det gg) ∈ sdet gH

Moreover, for distinct x, y ∈ R
×, we have:

det(s−1x sy) = y/x �= 1.

This implies that s−1x sy /∈ H , hence syH and sxH are disjoint cosets. We have

therefore:

G =
⊔

x∈R×
sxH.

The index [G : H] in this case is infinite.

Exercise: For the subgroup (Z,+) < (R,+), show that the set of (left) cosets are

parametrized by [0, 1), so that we have

R =
⊔

t∈[0,1)
(t+ Z) .

Exercise: For a vector subspace W ⊂ V , we consider the subgroup (W,+) <
(V,+). Then the set of cosets are given by the affine translates v +W , v ∈ V ,

of W in V . Let W ′ ⊂ V be a subspace complementary to W , meaning that it

satisfies the following conditions:

• dimW ′ = dimV − dimW , and

• W ∩W ′ = {0}.
Show that the set of cosets of W in V are parametrized by W ′, so that

V =
⊔

v∈W ′
(v +W ) .

Example 5.2.4. Consider the dihedral group Dn, and the cyclic subgroup 〈r〉
generated by the anticlockwise rotation by 2π/n. Since

Dn = {id, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s},
we directly see that

Dn = 〈r〉 � s〈r〉.
Example 5.2.5. Consider the n-th symmetric group Sn, and the subgroup An <
Sn consisting of all the even permutations. Let τ ∈ Sn be a transposition. Exer-
cise: the map σ 
→ τσ gives a bijection between An and Bn := Sn \ An, the set

of all odd permutations. Hence we have Sn = An � τAn.

Example 5.2.6. Recall that S3(= D3) is generated by ρ = (123) and μ = (12).
(In fact, S3 = {id, ρ, ρ2, μ, ρμ, ρ2μ}.) For the cyclic subgroup H = 〈μ〉 < S3, the

left cosets are given by H, ρH, ρ2H so that we have S3 = H � ρH � ρ2H .
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5.3 Group Homomorphisms
Definition. Let G = (G, ∗), G′ = (G′, ∗′) be groups.

A group homomorphism φ from G to G′ is a map φ : G −→ G′ which

satisfies:

φ(a ∗ b) = φ(a) ∗′ φ(b),
for all a, b ∈ G.

If φ is also bijective, then φ is called an isomorphism. If there exists an

isomorphism φ : G −→ G′ between two groups G and G′, then we say G is

isomorphic to G′, and denoted by G � G′.

Remark. Note that if a homomorphism φ is bijective, then φ−1 : G′ −→ G is

also a homomorphism, and consequently, φ−1 is an isomorphism.

Isomorphic groups have the same algebraic structure and thus share the same

algebraic properties – they only differ by relabeling of their elements. One of the

most fundamental questions in group theory is to classify groups up to isomor-

phisms.

Example 5.3.1. • Let V,W be vector spaces over R (or C). Then a linear

transformation φ : V −→ W is in particular a homomorphism between

abelian groups φ : (V,+) −→ (W,+).

• The determinant det : GL(n,R) −→ R
× is a group homomorphism.

• The exponential map exp : (R,+) −→ (R>0, ·) is an isomorphism from the

additive group of real numbers to the multiplicative group of positive real

numbers, whose inverse if given by the logarithm log : (R>0, ·) −→ (R,+).
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