Week 5

5.1 Cosets and The Theorem of Lagrange

Let GG be a group, H a subgroup of G. We are interested in knowing how large H
is relative to G.
We define a relation ~, on G as follows:

a ~p bif and only if b = ah for some h € H,
or equivalently:
a~p bifandonlyifa™'b € H.

Exercise: ~ is an equivalence relation.

We may therefore partition GG into a disjoint union of equivalence classes with
respect to ~y. We call these equivalence classes the left cosets of H in G; each
left coset of A has the form

aH = {ah :h € H}.
We could likewise define a relation ~z on G by
a ~g bif and only if b = ha for some h € H,

or equivalently:
a ~g bif and only if ba™' € H.

~ g 1s also an equivalence relation, whose equivalence classes, which are subsets
of the form

Hb={hb:he H}, beQaq,
are called the right cosets of H in G.

Definition. The number of left cosets of a subgroup H of G is called the index of
H in G. Tt is denoted by:
G : H]
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Theorem 5.1.1 (Lagrange). Let G be a finite group. Let H be subgroup of G, then
|H| divides |G|. More precisely, |G| =[G : H| - |H]|.

Proof. We already know that the left cosets of H partition GG. That is:

G:alHI_IaQHI_I...I_Ia[G;H]H,

where a;H Na;H = 0if i # j. Hence, |G| = ZE1H] |a;H|. Note that one of the
left cosets, say ai H, is equal to H = eH. The theorem follows if we show that
the size of each left coset of H is equal to |H|.

For each left coset S of H, pick an element a € S, and define a map ¢ :
H — S as follows:

We want to show that v is bijective.

For any s € S, by definition of a left coset (as an equivalence class) we have
s = ah for some h € H. Hence, 1 is surjective. If )(h') = ah’ = ah = 1(h) for
some h',h € H,then ' = a 'ah’ = a~'ah = h. Hence, 1 is one-to-one.

So we have a bijection between two finite sets. Hence, |S| = |H]. O

Remark. As a consequence of the Theorem of Lagrange, we see that the numbers
of left cosets and right cosets, if finite, are equal to each other; more generally, the
set of left cosets has the same cardinality as the set of right cosets.

Corollary 5.1.2. Let G be a finite group. The order of every element of G divides
the order of G.

Proof. Since G is finite, any element of g € G has finite order |g|. Since the order
of the subgroup:

H={g)={e.,9.9°,....¢""}
, it follows from Lagrange’s Theorem that |g| = |H| divides |G|. [

isequal to |g
Corollary 5.1.3. If the order of a group G is prime, then G is a cyclic group.

Proof. Let G be a group such that p = |G| is a prime number. Since p > 2, there
exists a € G \ {e}. The above corollary them says that |a| | p. But |a| # 1, so we
must have |a| = p. This means that G = (a). O

Corollary 5.1.4. If a group G is finite, then for all g € G we have:

g% =e.

Proof. The previous corollary already says that |g| | |G|, i.e. |G| = k- |g|. So
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5.2 Examples of cosets
Example 5.2.1. Let G = (Z,+). Let:
H=32=1{..,-9-6,-3,03,6,9,...}
The set H is a subgroup of . The left cosets of H in GG are as follows:
37,1+ 3%,2 + 37,

where i + 3Z := {i+ 3k : k € Z}.
In general, for n € Z, the left cosets of nZ in Z are:

i+nZ, i=0,1,2,...,n—1.
Example 5.2.2. Let G = GL(n,R). Let:
H=GL"(n,R):={heG:deth>0}.
(Exercise: H is a subgroup of G.)

Let:
—1

oo mo o
S oo
—o oo o

el

oo OO
oo O = O

Note that det s = det s71 = —1.
For any g € G, either detg > O ordetg < 0. If detg > 0, then g € H. If

det g < 0, we write:
1

g=(ss)g=s(s"g).
Since det s7'g = (det s7!)(det g) > 0, we have s™'g € H. So, G = H U sH,
and [G : H] = 2. Notice that both G and H are infinite groups, but the index of
H in G is finite.

Example 5.2.3. Let G = GL(n,R), H = SL(n,R). For each z € R*, let:
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Note that det s, = .
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For each g € GG, we have:
g = Sdetg(sgeltgg) € SdetgH
Moreover, for distinct z, y € R*, we have:
det(s;'s,) = y/z # 1.

This implies that s, 's, ¢ H, hence s,H and s, H are disjoint cosets. We have

therefore:
G = |_| s.H.

zeR*
The index |G : H| in this case is infinite.

Exercise: For the subgroup (Z, +) < (R, +), show that the set of (left) cosets are
parametrized by [0, 1), so that we have

R= || (t+2).

te€l0,1)

Exercise: For a vector subspace W C V/, we consider the subgroup (W, +) <
(V,4). Then the set of cosets are given by the affine translates v + W, v € V,
of Win V. Let W/ C V be a subspace complementary to 1/, meaning that it
satisfies the following conditions:

o dimW’' =dimV — dim W, and

o WNW'={0}.
Show that the set of cosets of W in V" are parametrized by 1/, so that
V=| | w+w).
veW’

Example 5.2.4. Consider the dihedral group D,,, and the cyclic subgroup (r)
generated by the anticlockwise rotation by 27 /n. Since

D, = {id,r,r* ..., r" ' s,rs,r%s, ..., r" s},
we directly see that
D, = (r) U s(r).

Example 5.2.5. Consider the n-th symmetric group .S,,, and the subgroup A4,, <
S, consisting of all the even permutations. Let 7 € .S,, be a transposition. Exer-
cise: the map o — 70 gives a bijection between A, and B,, := S, \ A, the set
of all odd permutations. Hence we have S,, = A,, LU TA,,.

Example 5.2.6. Recall that S3(= Ds) is generated by p = (123) and p = (12).

(In fact, S3 = {id, p, p?, i, p, p*pu}.) For the cyclic subgroup H = (i) < Ss, the
left cosets are given by H, pH, p? H so that we have S3 = H Ll pH U p*H.
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5.3 Group Homomorphisms

Definition. Let G = (G, %), G’ = (G, %) be groups.
A group homomorphism ¢ from G to G’ is a map ¢ : G — G’ which
satisfies:

¢a*b) = ¢(a) * ¢(b),
forall a,b € G.
If ¢ is also bijective, then ¢ is called an isomorphism. If there exists an

isomorphism ¢ : G — G’ between two groups GG and G, then we say G is
isomorphic to GG/, and denoted by G ~ G'.

Remark. Note that if a homomorphism ¢ is bijective, then ¢~ : G’ — G is
also a homomorphism, and consequently, ¢! is an isomorphism.

Isomorphic groups have the same algebraic structure and thus share the same
algebraic properties — they only differ by relabeling of their elements. One of the
most fundamental questions in group theory is to classify groups up to isomor-
phisms.

Example 5.3.1. e Let V. be vector spaces over R (or C). Then a linear
transformation ¢ : V' — WV is in particular a homomorphism between
abelian groups ¢ : (V,+) — (W, +).

e The determinant det : GL(n, R) — R* is a group homomorphism.

e The exponential map exp : (R, +) — (R, -) is an isomorphism from the
additive group of real numbers to the multiplicative group of positive real
numbers, whose inverse if given by the logarithm log : (R+, ) — (R, +).
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